Summary of conference call on May 29, 2008
Arie Shoshani

Topic: Use of SRM File Streaming by Gateway
1. File streaming concept was explained and advantages of using that. Concepts explained: Given a user space quota, “file release” by client can help in efficient use of the cache, since this can free space as soon as files are transferred successfully to the client. Other advantages, such as “file sharing” and retaining of “popular (hot) files” was also discussed.

2. Question. Given a request to a gateway1 for files managed by another gateway2, can gateway1 tell gateway2 what quota to use for the request?

Discussion. Quotas cab be supported by default (a config_file parameter), or explicitly through a request for space reservation and use of a space-token. The above can be managed by SRMs, but requires a general policy setup and enforcement that is usually done by a global VO module. Since this does not exist in ESG, quota policies are local to the site. We could consider use of space reservation requests, but local SRMs may still refuse.
3. Question. Given a request to a gateway1 for files managed by another gateway2, how does Gateway1 find out physical file names (PFNs) and file sizes given logical file names (LFNs)?

Discussion. A decision has been made not to replicate all information about files managed by a gateway to other gateways. Therefore, Gateway1 will have to request such information from Gateway2. That decision on non-replication of such catalogs was questioned, and the response that it is a good decision given that in total there will be millions of files in all the ESG nodes. A follow-up question was what should Gateway1 do if Gateway2 is down or unavailable? The response was that ESG does not aspire to be up 24x7x365, and that is tolerable. In such cases, the user should be advised that Gateway2 is not currently available. (The was also a discussion of whether Gateway1 should notify users when Gateway2 is back up, but this was considered unnecessary overkill for now).
4. Question. Should Gateway1 even have the LFNs for a dataset managed by Gateway2?

Discussion. Gateway1 will have to go to Gateway2 for authorization anyway, so why bother with replicating LFNs. Instead when a request is made Gateway1 can get that information from Gateway2 and display on it screen. Users can then select a subset for downloading. It was argued that such information is relatively small (in bytes) so getting that dynamically should not be significant in terms of delays. Consequently, Gateways will have to keep only the URIs (end points) of the gateway managing each particular dataset.

5. Question. Why go through Gateway1 cache and not get files directly from nodes for files managed by Gateway2?

Discussion. There are advantages of getting files to a gateway from remote location for popular files: all local requests can be fulfilled locally rather that getting them from a remote source repeatedly. However, the logic for deciding when to do that does not exist, it may be a policy issue, or may be determined from usage statistics. In general, DML can get files from remote nodes directly, provided that it has a certificate to use that the nodes will honor. This issue is still to be resolved (at the AHM, the concept of continued use of a *-certificate was discussed). As far as SRMs (BeStMan installations) and DML are concerned, they are now capable of managing requests from/to any site, and require no modification (except the security item).
6. Question. What if nodes do not have SRMs? Can DML get files from them?
Discussion. Yes, DML can get files from any site that does not have an SRM, but has the files in cache. It simply uses the protocol provided along with the PFNs, such as GridFTP, HTTPS, etc.

7. Comment. It is more practical to start with a gateway getting files through its cache first, make sure that works properly, and then move in a later phase to get files directly from the nodes if that is the desired mode of operation (that will require additional work to handle security as mentioned above. To this end, all the Java APIs identified as needed by a gateway to interact with SRMs have been already implemented. That includes functions for: (a) finding what’s in the cache (in-use, available space); (b) get all physical locations of files of a request in the SRM (called transfer URLs); (c) get a summary status of the request (how many requested, in cache, queued, released); (d) request to abort request (i.e. release all files in cache, and stop bringing more files in).
